Demystifying Pi

Figure the best way to shill my referral code is to do something useful so here's Pi's white paper cropped for easy reading/ discussion.

I'm only posting the technical parts of the paper, if you want to read the conceptual stuff then download the app and use referral code "CrummyWiz"

Lets get into it

Attached: 1000gecs.png (1024x1024, 454K)

Table of contents

Attached: 1.png (750x646, 100K)

Preface

Attached: 2.png (750x684, 153K)

1/28

Attached: 3.png (750x1165, 301K)

2/28

Attached: 4.png (750x1169, 326K)

3/28

Attached: 5.png (750x1142, 310K)

4/28

Attached: 6.png (750x374, 107K)

5/28

Attached: 7.png (750x1174, 338K)

6/28

Attached: 8.png (750x1179, 331K)

7/28

Attached: 9.png (750x630, 190K)

8/28

Attached: 10.png (750x1165, 314K)

9/28

Attached: 11.png (750x986, 260K)

10/28

Attached: 12.png (750x1057, 280K)

11/28

Attached: 13.png (750x896, 228K)

12/28

Attached: 14.png (750x1181, 341K)

13/28

Attached: 15.png (750x1334, 334K)

14/28

Attached: 16.png (750x955, 250K)

15/28

Attached: 17.png (750x866, 241K)

16/28

Attached: 18.png (750x821, 239K)

17/28

Attached: 19.png (750x876, 234K)

18/28

Attached: 20.png (750x1142, 335K)

19/28

Attached: 21.png (750x624, 179K)

Bump